If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11y^2-24y-4=0
a = 11; b = -24; c = -4;
Δ = b2-4ac
Δ = -242-4·11·(-4)
Δ = 752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{752}=\sqrt{16*47}=\sqrt{16}*\sqrt{47}=4\sqrt{47}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{47}}{2*11}=\frac{24-4\sqrt{47}}{22} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{47}}{2*11}=\frac{24+4\sqrt{47}}{22} $
| 1/4x=31/5 | | 4(x+4)=8^3 | | 7-5x/3=2x-8 | | 2x+1.50+1.50=11.50 | | 15-(3x+1)=2 | | c+1/2c=9.24 | | 4(x+4)=(8)(3) | | 3.3+c+1/2c=12.54 | | x+8÷4=6 | | x/8+8=0 | | 2(1.65)+c+1/2c=12.54 | | -8x—-12+8=76 | | -x+-2=6x-12 | | 19=-23+6(2-p | | a/7=8/2 | | 10y=-2+111/43 | | 3a+2(a-(3a-2))=0 | | (8-r)+(6-r)=10 | | 35-5x=31-x | | 5(x-4)-2=-6(-2x+6)-x | | 2x+7-11=x | | 9(x+9)=15^2 | | 2x+8=-3x+-15 | | 10=j-6/4 | | 18=5(v+4)-7v | | -5(0,8z-1,2)=-z+7,2 | | 7x+4x-19=95-8x | | -9(x-1,5)-1,5=-24 | | 4d-1=4 | | x(x-4)(x-4)=10x | | 4x^2+0.25x-1.125=0 | | -30+y=16 |